Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Lancet Reg Health West Pac ; 25: 100486, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1867463

ABSTRACT

Background: Early, rapid detection of SARS-CoV-2 is essential in healthcare settings in order to implement appropriate infection control precautions and rapidly assign patients to care pathways. Rapid testing methods, such as SARS-CoV-2 rapid antigen testing (RAT) may improve patient care, despite a lower sensitivity than real-time PCR (RT-PCR) testing. Methods: Patients presenting to an Emergency Department (ED) in Melbourne, Australia, were risk-stratified for their likelihood of active COVID-19 infection, and a non-randomised cohort of patients were tested by both Abbott Panbio™ COVID-19 Ag test (RAT) and SARS-CoV-2 RT-PCR. Patients with a positive RAT in the 'At or High Risk' COVID-19 group were moved immediately to a COVID-19 ward rather than waiting for a RT-PCR result. Clinical and laboratory data were assessed to determine test performance characteristics; and length of stay in the ED was compared for the different patient cohorts. Findings: Analysis of 1762 paired RAT/RT-PCR samples demonstrated an overall sensitivity of 75.5% (206/273; 95% CI: 69·9-80·4) for the Abbott Panbio™ COVID-12 Ag test, with specificity of 100% (1489/1489; 95% CI: 99·8-100). Sensitivity improved with increasing risk for COVID-19 infection, from 72·4% (95% CI: 52·8-87·3) in the 'No Risk' cohort to 100% (95% CI: 29·2-100) in the 'High Risk' group. Time in the ED for the 'At/High Risk' group decreased from 421 minutes (IQR: 281, 525) for those with a positive RAT result to 274 minutes (IQR:140, 425) for those with a negative RAT result, p = 0.02. Interpretation: The positive predictive value of a positive RAT in this setting was high, allowing more rapid instigation of COVID-19 care pathways and an improvement in patient flow within the ED. Funding: Royal Melbourne Hospital, Melbourne, Australia.

2.
Vaccine ; 40(26): 3484-3489, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1740252

ABSTRACT

This report of a joint World Health Organization (WHO) and United Kingdom (UK) Health Research Authority (HRA) workshop discusses the ethics review of the first COVID-19 human challenge studies, undertaken in the midst of the pandemic. It reviews the early efforts of international and national institutions to define the ethical standards required for COVID-19 human challenge studies and create the frameworks to ensure rigorous and timely review of these studies. This report evaluates the utility of the WHO's international guidance document Key criteria for the ethical acceptability of COVID-19 human challenge studies (WHO Key Criteria) as a practical resource for the ethics review of COVID-19 human challenge studies. It also assesses the UK HRA's approach to these complex ethics reviews, including the formation of a Specialist Ad-Hoc Research Ethics Committee (REC) for COVID-19 Human Challenge Studies to review all current and future COVID-19 human challenge studies. In addition, the report outlines the reflections of REC members and researchers regarding the ethics review process of the first COVID-19 human challenge studies. Finally, it considers the potential ongoing scientific justification for COVID-19 human challenge studies, particularly in relation to next-generation vaccines and optimisation of vaccination schedules. Overall, there was broad agreement that the WHO Key Criteria represented an international consensus document that played a powerful role in setting norms and delineating the necessary conditions for the ethical acceptability of COVID-19 human challenge studies. Workshop members suggested that the WHO Key Criteria could be practically implemented to support researchers and ethics reviewers, including in the training of ethics committee members. In future, a wider audience may be engaged by the original document and potential additional materials, informed by the experiences of those involved in the first COVID-19 human challenge studies outlined in this document.


Subject(s)
COVID-19 , Ethical Review , COVID-19/prevention & control , Ethics Committees, Research , Humans , Pandemics/prevention & control , World Health Organization
3.
Intern Med J ; 51(12): 2129-2132, 2021 12.
Article in English | MEDLINE | ID: covidwho-1583530

ABSTRACT

We report four cases of invasive pulmonary aspergillus co-infection in patients with coronavirus disease 2019 (COVID-19) infection and acute respiratory distress syndrome requiring intensive care unit (ICU) admission. Aspergillus fumigatus and Aspergillus terreus were isolated, with early infection onset following ICU admission. Clinicians should be aware of invasive pulmonary aspergillosis in ICU patients with COVID-19 infection, particularly those receiving dexamethasone. We propose screening of these high-risk patients with twice-weekly fungal culture from tracheal aspirate and, if feasible, Aspergillus polymerase chain reaction. Diagnosis is challenging and antifungal treatment should be considered in critically ill patients who have new or worsening pulmonary changes on chest imaging and mycological evidence of infection.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Critical Illness , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , SARS-CoV-2
6.
Med J Aust ; 215(6): 273-278, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1319820

ABSTRACT

OBJECTIVE: To compare the concordance and acceptability of saliva testing with standard-of-care oropharyngeal and bilateral deep nasal swab testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in children and in general practice. DESIGN: Prospective multicentre diagnostic validation study. SETTING: Royal Children's Hospital, and two general practices (cohealth, West Melbourne; Cirqit Health, Altona North) in Melbourne, July-October 2020. PARTICIPANTS: 1050 people who provided paired saliva and oropharyngeal-nasal swabs for SARS-CoV-2 testing. MAIN OUTCOME MEASURES: Numbers of cases in which SARS-CoV-2 was detected in either specimen type by real-time polymerase chain reaction; concordance of results for paired specimens; positive percent agreement (PPA) for virus detection, by specimen type. RESULTS: SARS-CoV-2 was detected in 54 of 1050 people with assessable specimens (5%), including 19 cases (35%) in which both specimens were positive. The overall PPA was 72% (95% CI, 58-84%) for saliva and 63% (95% CI, 49-76%) for oropharyngeal-nasal swabs. For the 35 positive specimens from people aged 10 years or more, PPA was 86% (95% CI, 70-95%) for saliva and 63% (95% CI, 45-79%) for oropharyngeal-nasal swabs. Adding saliva testing to standard-of-care oropharyngeal-nasal swab testing increased overall case detection by 59% (95% CI, 29-95%). Providing saliva was preferred to an oropharyngeal-nasal swab by most participants (75%), including 141 of 153 children under 10 years of age (92%). CONCLUSION: In children over 10 years of age and adults, saliva testing alone may be suitable for SARS-CoV-2 detection, while for children under 10, saliva testing may be suitable as an adjunct to oropharyngeal-nasal swab testing for increasing case detection.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Adolescent , Adult , Age Factors , Aged , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Prospective Studies , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Saliva/virology , Young Adult
9.
Lancet Reg Health West Pac ; 9: 100115, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1117260

ABSTRACT

BACKGROUND: In Australia, COVID-19 diagnosis relies on RT-PCR testing which is relatively costly and time-consuming. To date, few studies have assessed the performance and implementation of rapid antigen-based SARS-CoV-2 testing in a setting with a low prevalence of COVID-19 infections, such as Australia. METHODS: This study recruited participants presenting for COVID-19 testing at three Melbourne metropolitan hospitals during a period of low COVID-19 prevalence. The Abbott PanBioTM COVID-19 Ag point-of-care test was performed alongside RT-PCR. In addition, participants with COVID-19 notified to the Victorian Government were invited to provide additional swabs to aid validation. Implementation challenges were also documented. FINDINGS: The specificity of the Abbott PanBioTM COVID-19 Ag test was 99.96% (95% CI 99.73 - 100%). Sensitivity amongst participants with RT-PCR-confirmed infection was dependent upon the duration of symptoms reported, ranging from 77.3% (duration 1 to 33 days) to 100% in those within seven days of symptom onset. A range of implementation challenges were identified which may inform future COVID-19 testing strategies in a low prevalence setting. INTERPRETATION: Given the high specificity, antigen-based tests may be most useful in rapidly triaging public health and hospital resources while expediting confirmatory RT-PCR testing. Considering the limitations in test sensitivity and the potential for rapid transmission in susceptible populations, particularly in hospital settings, careful consideration is required for implementation of antigen testing in a low prevalence setting. FUNDING: This work was funded by the Victorian Department of Health and Human Services. The funder was not involved in data analysis or manuscript preparation.

10.
Diagn Microbiol Infect Dis ; 99(2): 115238, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1071247

ABSTRACT

The COVID-19 pandemic has placed unprecedented global demand on laboratory supplies required for testing. Sample pooling has been investigated by laboratories as a strategy to preserve testing capacity. We evaluate the performance of Cepheid Xpert® Xpress SARS-CoV-2 RT-PCR assay for testing samples in pools of 4 and 6. Clinical samples containing SARS-CoV-2, and confirmed negative clinical samples were used to create sample pools. Clinical samples had 'neat' Xpert® E gene cycle threshold values ranging between 20 and 28 and all were detected qualitatively when contained in pools of 4 or 6 samples. For these samples, pooling had a median change in cycle threshold value of 2.0 in pools of 4, and of 2.9 in pools of 6. With the use of Cepheid Xpert® Xpress SARS-CoV-2 RT-PCR assay, pooling of 4 or 6 samples may be an effective strategy to increase testing capacity.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Humans , Nasopharynx/virology , SARS-CoV-2/genetics , Sensitivity and Specificity
11.
Pathology ; 52(7): 754-759, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1044714

ABSTRACT

The unprecedented scale of testing required to effectively control the coronavirus disease (COVID-19) pandemic has necessitated urgent implementation of rapid testing in clinical microbiology laboratories. To date, there are limited data available on the analytical performance of emerging commercially available assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and integration of these assays into laboratory workflows. Here, we performed a prospective validation study of a commercially available assay, the AusDiagnostics Coronavirus Typing (8-well) assay. Respiratory tract samples for SARS-CoV-2 testing were collected between 1 March and 25 March 2020. All positive samples and a random subset of negative samples were sent to a reference laboratory for confirmation. In total, 2673 samples were analysed using the Coronavirus Typing assay. The predominant sample type was a combined nasopharyngeal/throat swab (2640/2673; 98.8%). Fifty-four patients were positive for SARS-CoV-2 (2.0%) using the Coronavirus Typing assay; 53/54 (98.1%) positive results and 621/621 (100%) negative results were concordant with the reference laboratory. Compared to the reference laboratory gold standard, sensitivity of the Coronavirus Typing assay for SARS-CoV-2 was 100% (95% CI 93.2-100%), specificity 99.8% (95% CI 99.1-100%), positive predictive value 98.1% (95% CI 90.2-99.7%) and negative predictive value 100% (95% CI 99.4-100%). In many countries, standard regulatory requirements for the introduction of new assays have been replaced by emergency authorisations and it is critical that laboratories share their post-market validation experiences, as the consequences of widespread introduction of a suboptimal assay for SARS-CoV-2 are profound. Here, we share our in-field experience, and encourage other laboratories to follow suit.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , Adult , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Sensitivity and Specificity , Workflow
12.
J Med Microbiol ; 70(2)2021 Feb.
Article in English | MEDLINE | ID: covidwho-955729

ABSTRACT

Saliva has recently been proposed as a suitable specimen for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Use of saliva as a diagnostic specimen may present opportunities for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) testing in remote and low-resource settings. Determining the stability of SARS-CoV-2 RNA in saliva over time is an important step in determining optimal storage and transport times. We undertook an in vitro study to assess whether SARS-CoV-2 could be detected in contrived saliva samples. The contrived saliva samples comprised 10 ml pooled saliva spiked with gamma-irradiated SARS-CoV-2 to achieve a concentration of 2.58×104 copies ml SARS-CoV-2, which was subsequently divided into 2 ml aliquots comprising: (i) neat saliva; and a 1 : 1 dilution with (ii) normal saline; (iii) viral transport media, and (iv) liquid Amies medium. Contrived samples were made in quadruplicate, with two samples of each stored at either: (i) room temperature or (ii) 4 °C. SARS-CoV-2 was detected in all SARS-CoV-2 spiked samples at time point 0, day 1, 3 and 7 at both storage temperatures using the N gene RT-PCR assay and time point 0, day 1 and day 7 using the Xpert Xpress SARS-CoV-2 (Cepheid, Sunnyvale, USA) RT-PCR assay. The ability to detect SARS-CoV-2 in saliva over a 1 week period is an important finding that presents further opportunities for saliva testing as a diagnostic specimen for the diagnosis of SARS-CoV-2.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Saliva/virology , Humans , Molecular Diagnostic Techniques , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Specimen Handling
14.
Med J Aust ; 213(6): 276-279, 2020 09.
Article in English | MEDLINE | ID: covidwho-696938

ABSTRACT

OBJECTIVES: To design and evaluate 3D-printed nasal swabs for collection of samples for SARS-CoV-2 testing. DESIGN: An iterative design process was employed. Laboratory evaluation included in vitro assessment of mock nasopharyngeal samples spiked with two different concentrations of gamma-irradiated SARS-CoV-2. A prospective clinical study compared SARS-CoV-2 and human cellular material recovery by 3D-printed swabs and standard nasopharyngeal swabs. SETTING, PARTICIPANTS: Royal Melbourne Hospital, May 2020. Participants in the clinical evaluation were 50 hospital staff members attending a COVID-19 screening clinic and two inpatients with laboratory-confirmed COVID-19. INTERVENTION: In the clinical evaluation, a flocked nasopharyngeal swab sample was collected with the Copan ESwab and a mid-nasal sample from the other nostril was collected with the 3D-printed swab. RESULTS: In the laboratory evaluation, qualitative agreement with regard to SARS-CoV-2 detection in mock samples collected with 3D-printed swabs and two standard swabs was complete. In the clinical evaluation, qualitative agreement with regard to RNase P detection (a surrogate measure of adequate collection of human cellular material) in samples collected from 50 hospital staff members with standard and 3D-printed swabs was complete. Qualitative agreement with regard to SARS-CoV-2 detection in three pairs of 3D-printed mid-nasal and standard swab samples from two inpatients with laboratory-confirmed SARS-CoV-2 was also complete. CONCLUSIONS: Using 3D-printed swabs to collect nasal samples for SARS-CoV-2 testing is feasible, acceptable to patients and health carers, and convenient.


Subject(s)
Clinical Laboratory Techniques/instrumentation , Coronavirus Infections/diagnosis , Diagnostic Techniques, Respiratory System/instrumentation , Patient Acceptance of Health Care/statistics & numerical data , Pneumonia, Viral/diagnosis , Printing, Three-Dimensional , Adult , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Pandemics , SARS-CoV-2
15.
J Infect Dis ; 222(8): 1280-1288, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-695351

ABSTRACT

BACKGROUND: Robust serological assays are essential for long-term control of the COVID-19 pandemic. Many recently released point-of-care (PoCT) serological assays have been distributed with little premarket validation. METHODS: Performance characteristics for 5 PoCT lateral flow devices approved for use in Australia were compared to a commercial enzyme immunoassay (ELISA) and a recently described novel surrogate virus neutralization test (sVNT). RESULTS: Sensitivities for PoCT ranged from 51.8% (95% confidence interval [CI], 43.1%-60.4%) to 67.9% (95% CI, 59.4%-75.6%), and specificities from 95.6% (95% CI, 89.2%-98.8%) to 100.0% (95% CI, 96.1%-100.0%). ELISA sensitivity for IgA or IgG detection was 67.9% (95% CI, 59.4%-75.6%), increasing to 93.8% (95% CI, 85.0%-98.3%) for samples >14 days post symptom onset. sVNT sensitivity was 60.9% (95% CI, 53.2%-68.4%), rising to 91.2% (95% CI, 81.8%-96.7%) for samples >14 days post symptom onset, with specificity 94.4% (95% CI, 89.2%-97.5%). CONCLUSIONS: Performance characteristics for COVID-19 serological assays were generally lower than those reported by manufacturers. Timing of specimen collection relative to onset of illness or infection is crucial in reporting of performance characteristics for COVID-19 serological assays. The optimal algorithm for implementing serological testing for COVID-19 remains to be determined, particularly in low-prevalence settings.


Subject(s)
Coronavirus Infections/blood , Pneumonia, Viral/blood , Algorithms , Antibodies, Viral/blood , Australia/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Neutralization Tests/methods , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Prevalence , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Serologic Tests/methods , Serologic Tests/standards
SELECTION OF CITATIONS
SEARCH DETAIL